Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of overproduction of condensed tannins and elevated temperature on chemical and ecological traits of genetically modified hybrid aspens (Populus tremula × P. tremuloides).

Identifieur interne : 002B12 ( Main/Exploration ); précédent : 002B11; suivant : 002B13

Effects of overproduction of condensed tannins and elevated temperature on chemical and ecological traits of genetically modified hybrid aspens (Populus tremula × P. tremuloides).

Auteurs : Minna Kosonen [Finlande] ; Sarita Keski-Saari ; Teija Ruuhola ; C Peter Constabel ; Riitta Julkunen-Tiitto

Source :

RBID : pubmed:23053919

Descripteurs français

English descriptors

Abstract

Gene transfer techniques offer new possibilities to study regulation of phenolic pathways and the defensive role of phenolics. Hybrid aspen lines (Populus tremula × tremuloides) that overexpress the PtMYB134 transcription factor were used to study the effects of condensed tannin production on plant physiology and plant defenses. The MYB134 protein activates all the known genes of the biosynthetic pathway for condensed tannins (CTs), so overexpression of MYB134 was expected to increase CT concentration in all tissues of the plants. Two out of three MYB134 overexpression lines (46 and 54) accumulated high levels of CTs and (+)-catechin, with a concomitant decrease in the levels of salicylates, but one transgenic line, MYB 61, failed to overproduce CTs. The concentrations of phenolic compounds generally were lower in the aspen leaves grown under elevated temperature than in those grown under ambient temperature. A specialist leaf beetle, Phratora vitellinae (Coleoptera: Chrysomelidae), was chosen to examine how over-expression of MYB134 and elevated temperature affect the food choice of a beetle adapted to feed on leaves rich in salicylates but containing little CT. Specialist beetles preferred the leaves grown at ambient temperatures possibly because these leaves had higher concentrations of salicylates, which are feeding stimulants. Beetles also preferred MYB line 61, which contained a normal level of CT but a slightly elevated level of salicylates. Our results show that transgenic plants are powerful tools, but that enhancing one secondary pathway may lead to unexpected effects on other pathways, and thus impact characteristics such as plant resistance against herbivores, especially under changing climatic conditions.

DOI: 10.1007/s10886-012-0193-8
PubMed: 23053919


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of overproduction of condensed tannins and elevated temperature on chemical and ecological traits of genetically modified hybrid aspens (Populus tremula × P. tremuloides).</title>
<author>
<name sortKey="Kosonen, Minna" sort="Kosonen, Minna" uniqKey="Kosonen M" first="Minna" last="Kosonen">Minna Kosonen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Natural Product Laboratory, University of Eastern Finland (UEF), P.O. Box 111, 80101 Joensuu, Finland. minna.kosonen@uef.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Biology, Natural Product Laboratory, University of Eastern Finland (UEF), P.O. Box 111, 80101 Joensuu</wicri:regionArea>
<wicri:noRegion>80101 Joensuu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keski Saari, Sarita" sort="Keski Saari, Sarita" uniqKey="Keski Saari S" first="Sarita" last="Keski-Saari">Sarita Keski-Saari</name>
</author>
<author>
<name sortKey="Ruuhola, Teija" sort="Ruuhola, Teija" uniqKey="Ruuhola T" first="Teija" last="Ruuhola">Teija Ruuhola</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
<author>
<name sortKey="Julkunen Tiitto, Riitta" sort="Julkunen Tiitto, Riitta" uniqKey="Julkunen Tiitto R" first="Riitta" last="Julkunen-Tiitto">Riitta Julkunen-Tiitto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23053919</idno>
<idno type="pmid">23053919</idno>
<idno type="doi">10.1007/s10886-012-0193-8</idno>
<idno type="wicri:Area/Main/Corpus">002858</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002858</idno>
<idno type="wicri:Area/Main/Curation">002858</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002858</idno>
<idno type="wicri:Area/Main/Exploration">002858</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of overproduction of condensed tannins and elevated temperature on chemical and ecological traits of genetically modified hybrid aspens (Populus tremula × P. tremuloides).</title>
<author>
<name sortKey="Kosonen, Minna" sort="Kosonen, Minna" uniqKey="Kosonen M" first="Minna" last="Kosonen">Minna Kosonen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Natural Product Laboratory, University of Eastern Finland (UEF), P.O. Box 111, 80101 Joensuu, Finland. minna.kosonen@uef.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Biology, Natural Product Laboratory, University of Eastern Finland (UEF), P.O. Box 111, 80101 Joensuu</wicri:regionArea>
<wicri:noRegion>80101 Joensuu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keski Saari, Sarita" sort="Keski Saari, Sarita" uniqKey="Keski Saari S" first="Sarita" last="Keski-Saari">Sarita Keski-Saari</name>
</author>
<author>
<name sortKey="Ruuhola, Teija" sort="Ruuhola, Teija" uniqKey="Ruuhola T" first="Teija" last="Ruuhola">Teija Ruuhola</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
<author>
<name sortKey="Julkunen Tiitto, Riitta" sort="Julkunen Tiitto, Riitta" uniqKey="Julkunen Tiitto R" first="Riitta" last="Julkunen-Tiitto">Riitta Julkunen-Tiitto</name>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Coleoptera (physiology)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Transfer Techniques (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (chemistry)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (chemistry)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Salicylates (metabolism)</term>
<term>Tannins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Coléoptères (physiologie)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Herbivorie (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Salicylates (métabolisme)</term>
<term>Tanins (métabolisme)</term>
<term>Techniques de transfert de gènes (MeSH)</term>
<term>Température élevée (MeSH)</term>
<term>Végétaux génétiquement modifiés (composition chimique)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Proteins</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Salicylates</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Salicylates</term>
<term>Tanins</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coléoptères</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coleoptera</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Crosses, Genetic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Transfer Techniques</term>
<term>Herbivory</term>
<term>Hot Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Chromatographie en phase liquide à haute performance</term>
<term>Croisements génétiques</term>
<term>Herbivorie</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Techniques de transfert de gènes</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gene transfer techniques offer new possibilities to study regulation of phenolic pathways and the defensive role of phenolics. Hybrid aspen lines (Populus tremula × tremuloides) that overexpress the PtMYB134 transcription factor were used to study the effects of condensed tannin production on plant physiology and plant defenses. The MYB134 protein activates all the known genes of the biosynthetic pathway for condensed tannins (CTs), so overexpression of MYB134 was expected to increase CT concentration in all tissues of the plants. Two out of three MYB134 overexpression lines (46 and 54) accumulated high levels of CTs and (+)-catechin, with a concomitant decrease in the levels of salicylates, but one transgenic line, MYB 61, failed to overproduce CTs. The concentrations of phenolic compounds generally were lower in the aspen leaves grown under elevated temperature than in those grown under ambient temperature. A specialist leaf beetle, Phratora vitellinae (Coleoptera: Chrysomelidae), was chosen to examine how over-expression of MYB134 and elevated temperature affect the food choice of a beetle adapted to feed on leaves rich in salicylates but containing little CT. Specialist beetles preferred the leaves grown at ambient temperatures possibly because these leaves had higher concentrations of salicylates, which are feeding stimulants. Beetles also preferred MYB line 61, which contained a normal level of CT but a slightly elevated level of salicylates. Our results show that transgenic plants are powerful tools, but that enhancing one secondary pathway may lead to unexpected effects on other pathways, and thus impact characteristics such as plant resistance against herbivores, especially under changing climatic conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23053919</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of overproduction of condensed tannins and elevated temperature on chemical and ecological traits of genetically modified hybrid aspens (Populus tremula × P. tremuloides).</ArticleTitle>
<Pagination>
<MedlinePgn>1235-46</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-012-0193-8</ELocationID>
<Abstract>
<AbstractText>Gene transfer techniques offer new possibilities to study regulation of phenolic pathways and the defensive role of phenolics. Hybrid aspen lines (Populus tremula × tremuloides) that overexpress the PtMYB134 transcription factor were used to study the effects of condensed tannin production on plant physiology and plant defenses. The MYB134 protein activates all the known genes of the biosynthetic pathway for condensed tannins (CTs), so overexpression of MYB134 was expected to increase CT concentration in all tissues of the plants. Two out of three MYB134 overexpression lines (46 and 54) accumulated high levels of CTs and (+)-catechin, with a concomitant decrease in the levels of salicylates, but one transgenic line, MYB 61, failed to overproduce CTs. The concentrations of phenolic compounds generally were lower in the aspen leaves grown under elevated temperature than in those grown under ambient temperature. A specialist leaf beetle, Phratora vitellinae (Coleoptera: Chrysomelidae), was chosen to examine how over-expression of MYB134 and elevated temperature affect the food choice of a beetle adapted to feed on leaves rich in salicylates but containing little CT. Specialist beetles preferred the leaves grown at ambient temperatures possibly because these leaves had higher concentrations of salicylates, which are feeding stimulants. Beetles also preferred MYB line 61, which contained a normal level of CT but a slightly elevated level of salicylates. Our results show that transgenic plants are powerful tools, but that enhancing one secondary pathway may lead to unexpected effects on other pathways, and thus impact characteristics such as plant resistance against herbivores, especially under changing climatic conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kosonen</LastName>
<ForeName>Minna</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Natural Product Laboratory, University of Eastern Finland (UEF), P.O. Box 111, 80101 Joensuu, Finland. minna.kosonen@uef.fi</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keski-Saari</LastName>
<ForeName>Sarita</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ruuhola</LastName>
<ForeName>Teija</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Constabel</LastName>
<ForeName>C Peter</ForeName>
<Initials>CP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Julkunen-Tiitto</LastName>
<ForeName>Riitta</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012459">Salicylates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001517" MajorTopicYN="N">Coleoptera</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018014" MajorTopicYN="N">Gene Transfer Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012459" MajorTopicYN="N">Salicylates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23053919</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-012-0193-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Sep;66(18):2127-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Apr;27(4):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11446300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 May;29(5):1083-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Jul;29(7):1565-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12921436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Dec 29;9:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1984 Apr;62(1):26-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Mar;36(3):286-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20177744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Aug;27(8):1595-615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11521399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):924-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1986 May;12(5):1189-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24307055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2009 Jun;35(6):664-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19462207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2007 Feb;33(2):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Apr;190(1):161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21175637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1988 Mar;75(2):185-189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1985 Aug;67(1):52-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 Nov;88(3):401-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):895-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Aug;36(8):898-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20589417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Feb;147(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16180043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
<name sortKey="Julkunen Tiitto, Riitta" sort="Julkunen Tiitto, Riitta" uniqKey="Julkunen Tiitto R" first="Riitta" last="Julkunen-Tiitto">Riitta Julkunen-Tiitto</name>
<name sortKey="Keski Saari, Sarita" sort="Keski Saari, Sarita" uniqKey="Keski Saari S" first="Sarita" last="Keski-Saari">Sarita Keski-Saari</name>
<name sortKey="Ruuhola, Teija" sort="Ruuhola, Teija" uniqKey="Ruuhola T" first="Teija" last="Ruuhola">Teija Ruuhola</name>
</noCountry>
<country name="Finlande">
<noRegion>
<name sortKey="Kosonen, Minna" sort="Kosonen, Minna" uniqKey="Kosonen M" first="Minna" last="Kosonen">Minna Kosonen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23053919
   |texte=   Effects of overproduction of condensed tannins and elevated temperature on chemical and ecological traits of genetically modified hybrid aspens (Populus tremula × P. tremuloides).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23053919" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020